- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0010000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Nguyen, Luan Viet (1)
-
Yao, Zhongmei (1)
-
Zhao, Tianming (1)
-
Zhou, Fangshi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Traditional training algorithms for Gumbel Softmax Variational Autoencoders (GS-VAEs) typically rely on an annealing scheme that gradually reduces the Softmax temperature τ according to a given function. This approach can lead to suboptimal results. To improve the performance, we propose a parallel framework for GS-VAEs, which embraces dual latent layers and multiple sub-models with diverse temperature strategies. Instead of relying on a fixed function for adjusting τ, our training algorithm uses loss difference as performance feedback to dynamically update each sub-model’s temperature τ, which is inspired by the need to balance exploration and exploitation in learning. By combining diversity in temperature strategies with the performance-based tuning method, our design helps prevent sub-models from becoming trapped in local optima and finds the GS-VAE model that best fits the given dataset. In experiments using four classic image datasets, our model significantly surpasses a standard GS-VAE that employs a temperature annealing scheme across multiple tasks, including data reconstruction, generalization capabilities, anomaly detection, and adversarial robustness. Our implementation is publicly available at https://github.com/wxzg7045/Gumbel-Softmax-VAE-2024/tree/main.more » « less
An official website of the United States government
